The National Space Grant Student Satellite Initiative Mission Endorsements Sponsors Members **Programs** Resources Crawl Walk Fly Run ## **Program Goals** Education Workforce development Technology development/qualification Planetary exploration Outreach Crawl Walk Run Fly # Form Partnerships Industry Government Universities K-12 # Start a National Competition Best science proposal Best design/documentation Best performance in the laboratory Best flight performance Best results/publications ## Maintain a National Data Base Publish design of top performers **Allow** Copies **Upgrades** Redesigns with better technology Crawl Walk Run Fly ## The National Space Grant Student Satellite Initiative Mission Endorsements Sponsors Members **Programs** Resources # That's all folks! Crawl Walk Run Fly ## The National Space Grant Student Satellite Initiative Mission Endorsements Sponsors Members **Programs** Resources ## Material for discussion Walk Fly Crawl Run ### A Roadmap for Future Space Grant Missions Earth Missions are the Gateway to Planetary and Deep-Space Missions Suggested by The University of Arizona Space Grant Student Satellite Program ## Subsystems for an Advanced Buses Some subsystems required for formation flight | Function | Technology | Requirement | Components | Team | |------------------------------|---|---|---|-------------| | Structure | LongSat | $10 \times 10 \times 10n$ cm | Design Fab. Val., Test | | | Power | Solar panels | Deploy | Deployment mech. | | | Stabilization | Spin
Ram pressure | Spin rate, Spin attitude
Math model | Spin & despin mech. Pressure vanes; control | | | Attitude sensing | Ref.: Star Sun Magnetic | Accuracy, Stability,
Knowledge | CMOS imager,
Pin-hole; photo-diodes,
Magnetometer | | | Attitude control | Magnetic damper
Magnetic torquer
Reaction wheels
Micro thrusters | Damping rate: Reaction time, Power, Torque: Reaction time, Power, Torque: Range of thrust, Power: | Bar magnets Wireloops, current source; control Reaction wheels; power source; control | | | $S/C \leftrightarrow ground$ | Optical | Availability of ground sites, Power on S/C | Laser stations; retro-
reflectors | | | $S/C \leftrightarrow S/C$ | Radio
Optical | Frequency, Power Beam divergence, Power | Transceivers; antennas
Diodes; retro-reflectors | | ## **Subsystems for the Basic Bus** | Function | Technology | Requirement | Components | Team | |-------------------------------|-------------------------------|---|---------------------------------------|-------------| | Structure | Body structure | $10 \times 10 \times 10$ cm
CubeSat specs. | Design, Fab.,
Validate Test | | | Power | Solar panels | Body mount Power: | Solar Cells | | | | Rechargeable battery | Power:
Cycling life: | Safety Hazard | | | Stabilization | Gravity gradient | Math model Mass distribution: | Ballast | | | Communication
S/C ↔ ground | Radio | Frequencies Band widths Power | Transceiver; antenna | | | Data & Command | On-shelf with flight heritage | Bit rate, Memory size Power: | Onboard computer; memories, interface | | ### **Scientific Objective** #### Monitor Atmospheric & Plasmaspheric Dynamics by Remote Sensing #### Daytime: Filter photometers, forward/backward looking for tomography. Monitor resonance scattering by atom and molecular tracers, Ca, Ca⁺, Mg⁺, Na., N₂⁺, O⁺ #### Nighttime: Filter photometers, forward/backward looking for tomography. Monitor nightglow photochemical emissions, OI(5577), OI(6300), O₂ (Atmospheric), OH(Meinel). #### Plasmasphere: Filter photometers to monitor resonance scattering by the He⁺ ion. #### CubeSat Requirements (besides the basic Bus): - Gravity gradient - Pith attitude knowledge, $\pm 1.0^{\circ}$ - Roll attitude knowledge, $\pm 1.0^{\circ}$ - More than one satellites #### **Scientific Objective** #### **Detect Gravity Waves at Nightglow Altitudes** Nighttime imaging with a band pass filter to isolate the $O_2(0,0)$ emission looking down #### **CubeSat Requirements:** - Gravity gradient - Time Delay Integrate (TDI) exposure control - On board analysis ### **Scientific Objective** #### Sprite detection and analysis Sprite imaging spectrograph to detect nitrogen emissions, N_2 first positive, N_2 second positive, and N_2^+ first negative emissions #### **CubeSat Requirements:** - Limb tracking using the $O_2(0,0)$ atmospheric emission layer - On board detection and analysis - Selected image storage ## **Scientific Objective** #### Absolute Atmospheric Density Monitor, O, O2 and N2 Absorption of solar flux in three band pass regions, 30 –60, 80-90 and 121.6 nm ### **CubeSat Requirements**: - Solar tracking - 2 axis control, bus, mirror or both - Control ± 2 degrees, both axes - Attitude knowledge \pm 0.5 degrees